Aug
13
Tue
2013
Invited Talk: Pertubation of DNA topology in mycobacteria @ Acharya Hall
Aug 13 @ 11:50 am – 12:12 pm

NagarajaV. Nagaraja Ph.D.
Professor, Indian Institute of Science, Bengaluru, India


Perturbation of DNA topology in mycobacteria

To maintain the topological homeostasis of the genome in the cell, DNA topoisomerases catalyse DNA cleavage, strand passage and rejoining of the ends. Thus, although they are essential house- keeping enzymes, they are the most vulnerable targets; arrest of the reaction after the first trans-esterification step leads to breaks in DNA and cell death.  Some of the successful antibacterial or anticancer drugs target the step ie arrest the reaction or stabilize the topo -DNA covalent complex. I will describe our efforts in this direction – to target DNA gyrase and also topoisomerase1 from mycobacteria. The latter, although essential, has no inhibitors described so far. The new inhibitors being characterized are also used to probe topoisomerase control of gene expression.

In the biological warfare between the organisms, a diverse set of molecules encoded by invading genomes target the above mentioned most vulnerable step of topoisomerase  reaction, leading to the accumulation of double strand breaks. Bacteria, on their part appear to have developed defense strategies to protect the cells from genomic double strand breaks. I will describe a mechanism involving three distinct gyrase interacting proteins which inhibit the enzyme in vitro. However, in vivo all these topology modulators protect DNA gyrase from poisoning effect by sequestering the enzyme away from DNA.

Next, we have targeted a topology modulator protein, a nucleoid associated protein(NAP) from Mycobacterium tuberculosis to develop small molecule inhibitors by structure based design. Over expression of HU leads to alteration in the nucleoid architecture. The crystal structure of the N-terminal half of HU reveals a cleft that accommodates duplex DNA. Based on the structural feature, we have designed inhibitors which bind to the protein and affect its interaction with DNA, de-compact the nucleoid and inhibit cell growth. Chemical probing with the inhibitors reveal the importance of HU regulon in M.tuberculosis.

Invited Talk: Targeting aberrant cancer kinome using rationally designed nano-polypharmaceutics @ Acharya Hall
Aug 13 @ 2:05 pm – 2:29 pm

ManzoorManzoor K, Ph.D.
Professor, Centre for Nanoscience & Molecular Medicine, Amrita University


Targeting aberrant cancer kinome using rationally designed nano-polypharmaceutics

Manzoor Koyakutty, Archana Ratnakumary, Parwathy Chandran, Anusha Ashokan, and Shanti Nair

`War on Cancer’ was declared nearly 40 years ago. Since then, we made significant progress on fundamental understanding of cancer and developed novel therapeutics to deal with the most complex disease human race ever faced with. However, even today, cancer remains to be the unconquered `emperor of all maladies’. It is well accepted that meaningful progress in the fight against cancer is possible only with in-depth understanding on the molecular mechanisms that drives its swift and dynamic progression. During the last decade, emerging new technologies such as nanomedicine could offer refreshing life to the `war on cancer’ by way of providing novel methods for molecular diagnosis and therapy.

In the present talk, we discuss our approaches to target critically aberrant cancer kinases using rationally designed polymer-protein and protein-protein core-shell nanomedicines. We have used both genomic and proteomic approaches to identify many intimately cross-linked and complex aberrant protein kinases behind the drug resistance and uncontrolled proliferation of refractory leukemic cells derived from patients. Small molecule inhibitors targeted against oncogenic pathways in these cells were found ineffective due to the involvement of alternative survival pathways. This demands simultaneous inhibition more than one oncogenic kinases using poly-pharmaceutics approach. For this, we have rationally designed core-shell nanomedicines that can deliver several small molecules together for targeting multiple cancer signalling. We have also used combination of small molecules and siRNA for combined gene silencing together with protein kinase inhibition in refractory cancer cells. Optimized nanomedicines were successfully tested in patient samples and found enhanced cytotoxicity and molecular specificity in drug resistant cases.

Nano-polypharmaceutics represents a new generation of nanomedicines that can tackle multiple cancer mechanisms simultaneously. Considering the complexity of the disease, such therapeutic approaches are not simply an advantage, but indispensable.

Acknowledgements:
We thank Dept. of Biotechnology and Dept. Of Science and Technology,Govt. of India for the financial support through `Thematic unit of Excellence in Medical NanoBiotechnology’ and `Nanomedicine- RNAi programs’.

Manzoor