Aug
12
Mon
2013
Plenary Talk: Nano-biotechnology: Omega-3 Oils and Nanofibres @ Sathyam Hall
Aug 12 @ 1:30 pm – 2:05 pm

collinColin Barrow, Ph.D.
Chair in Biotechnology, School of Life & Environmental Sciences, Deakin University, Australia


Nano-biotechnology: Omega-3 Oils and Nanofibres

The health benefits of long-chain omega-3 fatty acids are well established, especially for eicosapentaenoic acid (EPA) and docosapentaenoic acid (DHA) from fish and microbial sources. In fact, a billion dollar market exists for these compounds as nutritional supplements, functional foods and pharmaceuticals. This presentation will describe some aspects of our omega-3 biotechnology research that are at the intersection of Nano-biotechnology and oil chemistry. These include the use of lipases for the concentration of omega-3 fats, through immobilization of these lipases on nanoparticles, and the microencapsulation and stabilization of omega-3 oils for functional foods. I will also describe some of our work on the enzymatic production of resolvins using lipoxygenases, and the fermentation of omega-3 oils from marine micro-organisms. Finally, I will describe some of our work on the formation of amyloid fibrils and graphene for various applications in nano-biotechnology.

 

Aug
14
Wed
2013
Delegate Talk: Development of Supercritical Fluid Chromatography methods for the replacement of existing USP Normal phase liquid chromatography methods @ Amriteshwari Hall
Aug 14 @ 12:01 pm – 12:11 pm
Delegate Talk: Development of Supercritical Fluid Chromatography methods for the replacement of existing USP Normal phase liquid chromatography methods @ Amriteshwari Hall | Vallikavu | Kerala | India

Syed Salman Lateef and Vinayak A K


Development of Supercritical Fluid Chromatography methods for the replacement of existing USP Normal phase liquid chromatography methods

Normal phase liquid chromatography methods often have long run times and involve environmentally toxic/costly solvents. Supercritical chromatography methods on the other hand are faster, inexpensive, and eco-friendly. The low viscous supercritical carbon dioxide operates at high flow rates compared to LC without losing separation efficiency. In this work, SFC methods are developed to replace three United States Pharmacopeial (USP) normal phase achiral methods – prednisolone, tolazamide and cholecalciferol. System suitability parameters of the normal phase method are compared against the SFC method. Precision, linearity and robustness of the new SFC methods are demonstrated. SFC methods were found to be cost effective in terms of analysis time and solvent savings. The SFC method does not require purchase and disposal of expensive environmentally hazardous chemicals. Hence, the newly developed SFC method provides a faster and safer solution.