Aug
13
Tue
2013
Invited Talk: Spatially Distributed and Hierarchical Nanomaterials in Biotechnology @ Amriteshwari Hall
Aug 13 @ 9:30 am – 10:03 am

ShantiShantikumar Nair, Ph.D.
Professor & Director, Amrita Center for Nanosciences & Molecular Medicine, Amrita University, India


 

Spatially Distributed and Hierarchical Nanomaterials in Biotechnology 

Although nano materials are well investigated in biotechnology in their zero-, one- and two-dimensional forms, three-dimensional nanomaterials are relatively less investigated for their biological applications.  Three dimensional nano materials are much more complex with several structural and hierarchical variables controlling their mechanical, chemical and biological functionality.  In this talk examples are given of some complex three dimensional systems including,  scaffolds, aggregates, fabrics and membranes. Essentially three types of hierarchies are considered: one-dimensional hierarchy, two-dimensional hierarchy and three-dimensional hierarchy each giving rise to unique behaviors.

Shanti

Invited Talk: Nanomaterials for ‘enzyme-free’ biosensing @ Amriteshwari Hall
Aug 13 @ 2:17 pm – 2:35 pm

SatheeshSatheesh Babu T. G., Ph.D.
Associate Professor, Department of Sciences, School of Engineering, Amrita University, Coimbatore, India


Nanomaterials for ‘enzyme-free’ biosensing

Enzyme based sensors have many draw backs such as poor storage stability, easily affected by the change in pH and temperature and involves complicated enzyme immobilization procedures.  To address this limitation, an alternative approach without the use of enzyme, “non-enzymatic” has been tried recently. Choosing the right catalyst for direct electrochemical oxidation / reduction of a target molecule is the key step in the fabrication of non-enzymatic sensors.

Non-enzymatic sensors for glucose, creatinine, vitamins and cholesterol are fabricated using different nanomaterials, such as nanotubes, nanowires and nanoparticles of copper oxide, titanium dioxide, tantalum oxide, platinum, gold and graphenes. These sensors selectively catalyse the targeted analyte with very high sensitivity. These nanomaterials based sensors combat the drawbacks of enzymatic sensors.

Satheesh

Invited Talk: From Camels to Worms: Novel Approaches for Drug Discovery in Parkinson’s Disease. @ Acharya Hall
Aug 13 @ 3:02 pm – 3:23 pm

TimGuilliamsTim Guilliams, Ph.D.
Junior Associate Fellow at the Centre for Science and Policy, University of Cambridge


From Camels to Worms: Novel Approaches for Drug Discovery in Parkinson’s Disease

The discovery of novel treatments for neurodegenerative diseases, such as Parkinson’s disease, represents one of the biggest scientific challenges of the 21st century. The development of new tools and models to study the mechanisms underlying neurotoxicity is therefore essential. During my talk, I will outline new strategies for drug design and innovation used during my PhD at the University of Cambridge, which include the combination of fluorescent nematode worms, camelid antibody fragment technology and chemical compounds. These novel approaches will help us to gain insights into the key pathogenic steps involved in Parkinson’s disease and potentially lead to new therapeutic strategies.